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We introduce a systematic formalism for two-resonator circuit QED, where two on-chip microwave reso-
nators are simultaneously coupled to one superconducting qubit. Within this framework, we demonstrate that
the qubit can function as a quantum switch between the two resonators, which are assumed to be originally
independent. In this three-circuit network, the qubit mediates a geometric second-order circuit interaction
between the otherwise decoupled resonators. In the dispersive regime, it also gives rise to a dynamic second-
order perturbative interaction. The geometric and dynamic coupling strengths can be tuned to be equal, thus
permitting to switch on and off the interaction between the two resonators via a qubit population inversion or
a shifting of the qubit operation point. We also show that our quantum switch represents a flexible architecture
for the manipulation and generation of nonclassical microwave field states as well as the creation of controlled
multipartite entanglement in circuit QED. In addition, we clarify the role played by the geometric interaction,
which constitutes a fundamental property characteristic of superconducting quantum circuits without a coun-
terpart in quantum-optical systems. We develop a detailed theory of the geometric second-order coupling by
means of circuit transformations for superconducting charge and flux qubits. Furthermore, we show the ro-
bustness of the quantum switch operation with respect to decoherence mechanisms. Finally, we propose a
realistic design for a two-resonator circuit QED setup based on a flux qubit and estimate all the related
parameters. In this manner, we show that this setup can be used to implement a superconducting quantum
switch with available technology.
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I. INTRODUCTION

In the past few years, we have witnessed a tremendous
experimental progress in the flourishing realm of circuit
QED.1–4 Different types of superconducting qubits have been
strongly coupled to on-chip microwave resonators, which act
as quantized cavities. Recently, a quantum state has been
stored and coherently transferred between two superconduct-
ing phase qubits via a microwave resonator5 and two trans-
mon qubits have been coupled utilizing an on-chip cavity as
a quantum bus.6 Furthermore, microwave single photons
have been generated by spontaneous emission7 and Fock
states created in a system based on a phase qubit.8 In addi-
tion, lasing effects have been demonstrated exploiting a
single Cooper-pair box,9 the nonlinear response of the
Jaynes-Cummings �JC� model has been observed,10,11 the
two-photon driven JC dynamics has been used as a means to
probe the symmetry properties of a flux qubit,12 and resona-
tors have been tuned with high fidelity.13,14 These formidable
advances show how circuit QED systems are rapidly reach-
ing a level of complexity comparable to that of the already
well-established quantum-optical cavity QED.15–17

Among the aims common to these experiments is the pos-
sibility of performing quantum information processing,18 in
particular following the lines of recent proposals; e.g., see
Refs. 19 and 20. The latter considered a two-dimensional
array of on-chip resonators coupled to qubits. In this or any
other multicavity setup,21 it is highly desirable to switch on

and off an interaction between two resonators or to compen-
sate for their spurious cross-talk. Moreover, investigating the
basic properties of two-resonator circuit QED, where two
resonators are coupled to one qubit, certainly represents a
subject of fundamental relevance. In fact, when operating
such a system in a regime dominated by second-order �dis-
persive� interactions, as in the scope of this paper, the re-
quirements on the qubit coherence properties are consider-
ably relaxed.22,23 In this manner, two-resonator architectures
constitute an appealing playground for testing quantum me-
chanics on a chip. We also notice that second-order
interactions12,24 are becoming more and more prominent in
circuit QED experiments owing to the possibility of very
large first-order coupling strengths.3–12,24,25

In this paper, we theoretically study a three-circuit net-
work where a superconducting charge or flux qubit26–29 in-
teracts with two on-chip microwave cavities, a two-resonator
circuit QED setup. In the absence of the qubit, the resonators
are assumed to have negligible or small geometric first-order
�direct� cross-talk. This scenario is similar to that of quantum
optics, where an atom can interact with two orthogonal-
cavity modes.30 However, there are some crucial differences.
The nature of the three-circuit system considered here re-
quires accounting for a geometric second-order circuit inter-
action between the two resonators. This gives rise to cou-
pling terms in the interaction Hamiltonian, which are
formally equivalent to those describing a beam splitter. This
interaction is mediated by the circuit part of the qubit and
does not depend on the qubit state. It is worth mentioning
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that this coupling does not exist in the two-mode JC model
studied in quantum optics, where atoms do not sustain any
geometric interaction. This means that introducing a second
resonator causes a departure from the neat analogy between
cavity and one-resonator circuit QED.22,31–34 In the disper-
sive regime, where the transition frequency of the qubit is
largely detuned from that of the cavities, other beam-splitter-
type interaction terms between the two resonators also ap-
pear. Their existence is known in quantum optics35 and re-
sults from a dynamic second-order perturbative interaction,
which depends on the state of the qubit. The sign of this
interaction can be changed by an inversion of the qubit popu-
lation or by shifting of the qubit operation point. The latter
mechanism can also be used to change the interaction
strength. Notably, for a suitable set of parameters, the geo-
metric and dynamic second-order coupling coefficients can
be made exactly equal by choosing a proper qubit-resonator
detuning. In this case, the interaction between the two cavi-
ties can be switched on and off, thereby enabling the imple-
mentation of a discrete quantum switch as well as a tunable
coupler.

In circuit QED, several other scenarios have been envi-
sioned where a qubit interacts with different bosonic modes,
e.g., those of an adjacent nanomechanical resonator or simi-
lar. It has been proposed to implement quantum transducers36

as well as Jahn-Teller models and Kerr nonlinearities,37 to
generate nontrivial nonclassical states of the microwave
radiation,21,38 to create entanglement via Landau-Zener
sweeps,39 and to carry out high fidelity measurements of mi-
crowave quantum fields.38,40 Moreover, multiresonator set-
ups might serve in probing quantum walks41 and studying
the scattering process of single microwave photons.42 All of
these proposals, however, do not develop a systematic theory
of a realistic architecture based on two on-chip microwave
resonators and do not take into account the fundamental geo-
metric second-order coupling between them. Also, our quan-
tum switch is inherently different from the quantum switches
investigated in atomic systems.43 First, we consider a qubit
simultaneously coupled to two resonators, which are not po-
sitioned one after the other in a cascade configuration as in
Ref. 43. Second, our switch behaves as a tunable quantum
coupler between the two resonators. Last, atomic systems
naturally lack a geometric second-order coupling. Further-
more, it is important to stress that the dynamic interaction
studied here cannot be cast within the framework of the
quantum reactance theory �capacitance or inductance, de-
pending on the specific implementation�.44–51 The main hy-
pothesis for a quantum reactance to be defined is a resonator
characterized by a transition frequency extremely different
from that of the qubit. Typically, the resonator frequency is
considered to be very low �practically zero� compared to the
qubit one. Such a scenario is undesirable for the purposes of
this work, where a truly quantized high-frequency cavity ini-
tialized in the vacuum state has to be used. Also, to our
knowledge, the quantum reactance works mentioned above
do not directly exploit a geometric coupling between two
resonators to compensate for a dynamic one. Nevertheless,
we believe that a circuit theory approach27,52–57 to two-
resonator circuit QED, which we pursue throughout this pa-
per, allows for a deep comprehension of the matter discussed

here. Finally, we point out that the geometric first-order cou-
pling between two resonators can be reduced or erased by
simple engineering, whereas the second-order coupling due
to the presence of a qubit circuit is a fundamental issue. As
we show later, whenever we want the coupling between qu-
bit and resonators to be large, an appreciable geometric
second-order coupling inevitably appears, especially for
resonators perfectly isolated in first order. In summary, our
quantum switch is based on a combination of geometric and
dynamic interactions competing against each other and is a
promising candidate to perform nontrivial quantum opera-
tions between different resonators.

The paper is organized as follows: In Sec. II, we develop
a systematic formalism for two-resonator circuit QED em-
ploying second-order circuit theory. In Sec. III, we focus on
the dispersive regime of two-resonator circuit QED and de-
rive the quantum switch Hamiltonian. In Sec. IV, we discuss
the main limitations to the quantum switch operation due to
decoherence processes of qubit and cavities. In Sec. V, we
propose a realistic implementation of a two-resonator circuit
QED architecture, which is suitable for the realization of a
superconducting quantum switch. Finally, in Sec. VI, we
summarize our main results, draw our conclusions, and give
a brief outlook.

II. TWO-RESONATOR CIRCUIT QED

In this section, we take the perspective of classical circuit
theory57 and extend it to the quantum regime to derive the
Hamiltonian of a quantized three-circuit network. In general,
the latter is composed of two on-chip microwave resonators
and a superconducting qubit. Our approach is similar to that
of Refs. 27 and 52–56. In addition, we account for second-
order circuit elements linking different parts of the network,
which is considered to be closed and nondissipative. Here,
closed means that we assume no energy flow between the
network under analysis and other possible adjacent networks.
These could be additional circuitry used to access the three-
circuit network from outside and where excitations could
possibly decay. Nondissipative means that we consider ca-
pacitive and inductive circuit elements only, or in general,
reactive elements. We neglect resistors, which could repre-
sent dissipation processes of qubit and resonators. In sum-
mary, the network of our model is altogether a conservative
system. The detailed role of decoherence mechanisms is
studied later in Sec. IV.

The first step of our derivation is to demonstrate a geo-
metric second-order coupling between the circuit elements of
a simple three-node network. This means that we assume the
various circuit elements to be concentrated in three confined
regions of space �nodes�. Any topologically complex three-
circuit network can be reduced to such a three-node network,
where each node is fully characterized by its capacitance
matrix C and/or inductance matrix M. The topology of the
different circuits �e.g., two microstrip or coplanar waveguide
resonators coupled to a superconducting qubit� is thus ab-
sorbed in the definition of C and M, simplifying the analysis
significantly. The system Hamiltonian can then be straight-
forwardly obtained. In fact, the classical energy of a conser-
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vative network can be expressed as E= �V� TCV� + I�TMI�� /2,

where the vectors V� and I� represent the voltages and currents
on the various capacitors and inductors.57 The usual quanti-
zation of voltages and currents22 and the addition of the qubit
Hamiltonian allows us to obtain the fully quantized Hamil-
tonian of the three-node network �cf. Sec. II A�. Special at-
tention is then reserved to compute contributions to the ma-
trices C and M up to second order. These are consequently
redefined as C�2� and M�2�, respectively �cf. Sec. II B�. Cor-
rections of third or higher order to the capacitance and in-
ductance matrices are discussed in Appendix A, where we
show that they are not relevant for this work.

We finally consider two examples of possible implemen-
tations of two-resonator circuit QED �cf. Sec. II C�. These
examples account for two superconducting resonators
coupled to a charge quantum circuit �e.g., a Cooper-pair box
or a transmon� or a flux quantum circuit �e.g., a supercon-
ducting one- or three-Josephson-junction loop�. Before mov-
ing to a two-level approximation, the Hamiltonians of these
devices can be used to deduce the geometric second-order
circuit interaction between the two resonators. This result is
better understood considering the lumped-element equivalent
circuits of the entire systems. In this way, the conceptual step
from a three-circuit to a three-node network is also clarified
and the role played by the topology of the different circuits
becomes more evident. We show that special care must be
taken when quantizing the interaction Hamiltonian between
charge or flux quantum circuits and microwave fields by the
simple promotion of an ac classical field to a quantum one.
Interestingly, comparing the standard Hamiltonian of charge
and flux quantum circuits coupled to quantized fields with ab
initio models based on lumped-element equivalent circuits,
we prove that the latter are better suited to describe circuit
QED systems.

A. Hamiltonian of a generic three-node network

The system to be studied is sketched in Figs. 1�a� and
1�b�, where the microwave resonators are represented by
symbolic mirrors. A more realistic setup is discussed in Sec.
V and is drawn in Fig. 6�a�. A and B represent the two
cavities and Q represents a superconducting qubit, making
altogether a three-node network. The coupling channels be-
tween the three nodes are assumed to be capacitive and/or
inductive �for simplicity, in Figs. 1�a� and 1�b� only induc-
tive couplings are considered�. We also hypothesize the first-
order interaction between A and B to be weak and that be-
tween A or B and Q to be strong by design. In other words,
the first-order capacitance and inductance matrices are C
=Ckl and M=Mkl, with k , l� �A,B,Q�, where Ckl=Clk and
Mkl=Mlk because of symmetry reasons. In addition, we as-
sume CAB�c�Ckl�AB and MAB�m�Mkl�AB. The ele-
ments c and m represent a first-order cross-talk between A
and B, which can be either spurious or engineered and, here,
is considered to be small. In Sec. V, we delve into a more
detailed analysis of the geometric first-order coupling be-
tween two microstrip resonators. Restricting the cavities to a
single relevant mode, the total Hamiltonian of the system is
given by

ĤT =
1

2
V̂� TC�n�V̂� +

1

2
Î�TM�n�Î� +

1

2
G�Ec,EJ��̂̄x, �1�

where C�n� and M�n� are the renormalized capacitance and
inductance matrices up to the nth order, with C�1��C and

M�1��M. Also, V̂� ��V̂A, V̂B, V̂Q�T and Î���ÎA, ÎB, ÎQ�T. In
general, G is a function of the charging energy Ec and/or
coupling energy EJ of the Josephson-tunnel junctions in the
qubit. For instance, G=EJ for a charge qubit and G
��EcEJ exp�−��Ec /EJ� for a flux qubit ���const�. Fur-

thermore, V̂A�vdc+vA0�â†+ â�, V̂B�vB0�b̂†+ b̂�, V̂Q�vQ�̂̄z,

ÎA� idc+ iA0j�â†− â�, ÎB� iB0j�b̂†− b̂�, and ÎQ� iQ�̂̄z. In these

� � � �

FIG. 1. �Color online� �a�, �b� Sketches of the system under
analysis. All constants are defined in the main body of the paper.
Only inductive couplings are considered. �a� Schematic representa-
tion of the first-order coupling Hamiltonian of our three-node net-
work. Two cavities �resonators� A and B interact with a generic
superconducting qubit Q. A and B can have a weak geometric first-
order coupling �MAB=m �broken blue �dark gray� arrow�, as in the

Hamiltonian ĤAB
�1� in Eq. �2�. The two solid green �light gray� arrows

represent a two-mode Jaynes-Cummings dynamics with coupling
coefficients gA�MAQ and gB�MQB. �b� Visualization of the effec-

tive second-order coupling Hamiltonian Ĥeff in Eq. �14�. The solid
blue �dark gray� arrows show the second-order geometric coupling
channel mediated by a virtual excitation of the circuit associated

with Q, as in the Hamiltonian ĤAB
�2� in Eq. �3�. This channel is

characterized by a coupling coefficient gAB�MAQMQB /MQQ �the
small contribution from m is neglected� and is qubit-state indepen-
dent. The solid green �light gray� arrows show the second-order
dynamic channel mediated by a virtual excitation of the qubit Q.
This channel is characterized by a coupling coefficient �gAgB /�
and is qubit-state dependent. �c�-�e� Three generic sketches of a
possible setup: �c� A flux qubit �Q� sits at the current antinode of,
e.g., the first mode of two � /2 resonators �solid black lines; only the
inner conductor is shown�. The open circles at the “IN” and “OUT”
ports denote the position of the coupling capacitors to be used in
real implementations �e.g., cf. Sec. V and Fig. 6�a��. �d� A charge
qubit �Q� sits at the voltage antinode of, e.g., the first mode of two
� /2 resonators. �e� A charge or flux qubit sits at the voltage �e.g.,
second mode, � resonators� or current �e.g., first mode, � /2 reso-
nators� antinode, respectively, of two orthogonal resonators �Ref.
20�.
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expressions, �̂̄x and �̂̄z are the usual Pauli operators for a
spin-1/2 system in the diabatic basis, which consists of the
eigenstates 	−
 and 	+ 
 of CAQvdcvQ�̂̄z �charge case� or

MAQidciQ�̂̄z �flux case�. Additionally, â†, b̂†, â, and b̂ are
bosonic creation and annihilation operators for the fields of
cavities A and B, respectively, and j��−1. The dc voltage
vdc and current idc account for the quasistatic polarization of
the qubit and can be applied through any suitable bias circuit.
For definiteness, we have chosen here cavity A to perform
this function. This is the standard approach followed by the
charge qubit circuit QED community.1 However, for flux qu-
bits the current idc is more easily applied via an external
coil.3,12,25,58 In the latter case, we impose idc=0 and add to

the Hamiltonian in Eq. �1� the term ��x
dc−�0 /2�ÎQ, where

�x
dc is an externally applied flux bias and �0�h /2e=2.07

	10−15 Wb is the flux quantum. The results of our deriva-
tion are not affected by this particular choice. The vacuum
�zero-point� fluctuations in the voltage and current of each
resonator are given by vA0��
�A /2CAA and vB0
��
�B /2CBB and iA0��
�A /2MAA and iB0
��
�B /2MBB, respectively. Here, �A and �B are the tran-
sition angular frequencies of the two cavities. Finally, vQ and
iQ represent the voltage of the superconducting island�s� and
the persistent current of the qubit circuit. Depending on the
specific qubit implementation, either vQ or iQ dominates,
thus defining the charge and flux regimes.

B. Capacitance and inductance matrices up to second order

The matrices C�n� and M�n� account for corrections up to
the nth-order interaction process between the elements of the
network. In fact, in order to write the exact Hamiltonian of
the circuit, all possible electromagnetic paths connecting its
nodes must be considered. A consequence of this approach to
circuit theory is that the direct coupling

ĤAB
�1� = V̂AcV̂B + ÎAmÎB �2�

between resonators A and B �cf. Fig. 1�a��, here assumed to
be weak, is not the only interaction mechanism to be consid-
ered. In fact, an indirect coupling mediated by the circuit
associated with the qubit Q has to be also included in the
Hamiltonian. The dominating term for the A-Q-B excitation
pathway can be derived from its second-order electromag-
netic energy �cf. Fig. 1�b��, which gives

ĤAB
�2� = ĤAB

�1� + V̂ACAQ
1

CQQ
CQBV̂B + ÎAMAQ

1

MQQ
MQBÎB.

�3�

Note that the inverse path �B-Q-A� is already included in this
equation. In our work, we assume 0�c�CAQCQB /CQQ and
0�m�MAQMQB /MQQ �cf. Sec. V�. When c ,m�0, the di-
rect coupling between A and B is negligible; i.e., the contri-

bution of ĤAB
�1� can be omitted. On the other hand, when c

0 and/or m0, both first- and second-order circuit theory
contributions are relevant. In this case, c and m can represent
a spurious or an engineered cross-talk. The latter can delib-
erately be exploited to increase the strength of the geometric

second-order coupling. However, c and m should be small
enough to leave the mode structure and quality factors of A
and B unaffected.

From the knowledge of ĤAB
�2� , the capacitance matrix up to

second order is readily obtained,

C�2� = � CAA c +
CAQCQB

CQQ
CAQ

c +
CBQCQA

CQQ
CBB CBQ

CQA CQB CQQ

 . �4�

The second-order corrections to the self-capacitances, i.e.,
the diagonal elements Ckk, are absorbed in their definitions59

�cf. Sec. II C�. In analogy, the corrected inductance matrix
M�2� is found by substituting Ckl with Mkl and c with m in
matrix �4�, yielding

M�2� = � MAA m +
MAQMQB

MQQ
MAQ

m +
MBQMQA

MQQ
MBB MBQ

MQA MQB MQQ

 . �5�

Again, second-order corrections to the self-inductances are
absorbed in the definition of Mkk. The matrices C�2� and M�2�

constitute the first main result of this work. They show that if
a strong qubit-resonator coupling �i.e., a vacuum Rabi cou-
pling �CAQ,CQB for charge quantum circuits and �MAQ,
MQB for flux quantum circuits� is present, as in most circuit
QED implementations,1,3–12,24,25 a relevant geometric
second-order coupling ��CAQCQB /CQQ or �MAQMQB /MQQ
for charge and flux quantum circuits, respectively� has to be
expected. This coupling becomes relevant in the dispersive
regime,22,24 where a dynamic second-order coupling, whose
magnitude can be comparable to that of the geometric one, is
also present �cf. Sec. III A�. We study in detail the relation-
ship between m and MAQMQB /MQQ in Sec. V. There, we
show that for a realistic design engineered for a flux qubit,
which is our experimental expertise,12,58 the geometric
second-order interaction dominates over the first-order one.

Figures 1�c�–1�e� show three generic sketches, where the
coupling of two on-chip resonators to one superconducting
qubit is illustrated. In particular, the sketch drawn in Fig. 1�c�
is suitable when a flux qubit is intended to be utilized. In this
case, the qubit is positioned at the current antinode of the
first mode60 of two � /2 resonators. Moreover, this design
clearly allows for engineering a strong coupling between the
qubit and each resonator while reducing the geometric first-
order coupling between resonators A and B. This is due to
the fact that the two cavities are close to each other only in
the restricted region where the qubit is located and then de-
velop abruptly toward opposite directions. The sketch in Fig.
1�d�, instead, is more suitable for charge qubit applications.
The qubit can easily be fabricated near a voltage antinode.1,22

Similar arguments as in the previous case apply for the qubit-
resonator couplings and the geometric first-order coupling
between A and B. Finally, the sketch in Fig. 1�e� relies on an
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orthogonal-cavity design, which can be used for both charge
and flux qubits. The main properties of such a setup were
already presented in two of our previous works,20,21 where
orthogonal cavities were exploited for different purposes. In
conclusion, we want to stress that based on the general
sketches in Figs. 1�c�–1�e�, a large variety of specific experi-
mental implementations can be envisioned.

C. Role of circuit topology: Two examples

All results in Secs. II A and II B are general and do not
rely a priori on the knowledge of the three-circuit network
topology. Here, we explain with the aid of two easy ex-
amples how to obtain a reduced three-node network starting
from a three-circuit one. The examples are based on the cou-
pling of two superconducting coplanar waveguide or micros-
trip resonators to a single Cooper-pair box1,22 �or a
transmon61–63� or to a superconducting loop interrupted by
one �or three� Josephson tunnel junction�s�.25,32,60,64

The first example is the case of a single Cooper-pair box
�a charge quantum circuit�, which is formally equivalent to
the more appealing case of the transmon. A single Cooper-
pair box1,22 is made of a superconducting island connected to
a large reservoir via two Josephson tunnel junctions with
Josephson energy EJ and capacitance CJ. The box is capaci-
tively coupled to two resonators A and B by the gate capaci-
tors Cga and Cgb, respectively. In the charge basis, the Hamil-
tonian of a single Cooper-pair box can be written as22

Ĥc = 4EC�
n

�n̂ − ng�2	n
�n	 −
EJ

2 �
n

�	n
�n + 1	 + 	n + 1
�n	� ,

�6�

where EC�e2 /2C� is the box electrostatic energy �e is the
electron charge�, C��Cga+2CJ+Cgb is its total
capacitance,65 �n	n̂	n
 represents the number of excess Coo-
per pairs on the island, and ng is the global dimensionless
gate charge applied to it. The latter is the sum of a dc signal
ng

dc �here, considered to be applied through cavity A� and a
high-frequency excitation �ng applied through cavities A
and/or B, ng�ng

dc+�ng. In particular, �ng can represent the
quantized electric fields �equivalent to the voltages� of the
two cavities acting as quantum harmonic oscillators. Re-
stricting ourselves to the two lowest charge states n=0,1, we
can rewrite the Hamiltonian in Eq. �6� as

Ĥc = 2EC�1 − 2ng + 2ng
2 + �̂̄z − 2ng�̂̄z� −

EJ

2
�̂̄x

= 2EC�1 − 2ng
dc��̂̄z −

EJ

2
�̂̄x

− 4EC�ng�1 − 2ng
dc − �ng + �̂̄z� . �7�

The second line of the above equation forms the standard
charge qubit, which can be controlled by the quasistatic bias
ng

dc�Cgavdc /2e. The last expression contains four high-
frequency interaction terms. Among those, two of them are
particularly interesting.66 These are 4EC�ng

2 and −4EC�ng�̂̄z.
We now quantize the high-frequency excitations �ng→�n̂g

�CgavA0�â†+ â� /2e+CgbvB0�b̂†+ b̂� /2e, using the fact that
they are the quantized voltages of the two resonators. We
subsequently perform a rotating-wave approximation �RWA�
and, finally, write the interaction Hamiltonian

Ĥc
int = 
GAB�â† + â��b̂† + b̂� − 
GA�̂̄z�â† + â�

− 
GB�̂̄z�b̂† + b̂� + 
�̃Aâ†â + 
�̃Bb̂†b̂ , �8�

where all constant energy offsets, e.g., the Lamb shifts, have
been neglected. Remarkably, in the first expression in the
above equation we identify a geometric resonator-resonator
interaction term with second-order coupling coefficient
GAB�vA0vB0CgaCgb /C�
. Furthermore, the second and
third expressions in this equation represent the expected
first-order qubit-resonator interactions with coupling coeffi-
cients GA�e�Cga /C��vA0 /
 and GB�e�Cgb /C��vB0 /
. In
the last two expressions, the two small renormalizations �̃A
��CgavA0�2 /C�
 and �̃B��CgbvB0�2 /C�
 of the resonator
angular frequencies are artifacts due to the simple model
behind the Hamiltonian in Eq. �6�. A more advanced model
based on a realistic circuit topology yields similar renormal-
ization terms, which, however, are governed by different
topology-dependent constants. Among the possible ways to
find the correct constants, we choose the circuit transforma-
tions in Figs. 2�a�–2�c�. This approach also allows us to bet-
ter understand the geometric second-order interaction term.

In Fig. 2�a�, the two cavities are represented as LC reso-
nators with total capacitances and inductances Cra and Crb
and Lra and Lrb, respectively. The quantized voltages and

currents of the two resonators are V̂ra�vA0�â†+ â�, V̂rb

�vB0�b̂†+ b̂�, Îra� iA0j�â†− â�, and Îrb� iB0j�b̂†− b̂�, respec-
tively. Also, Cab accounts for a first-order cross capacitance
between resonators A and B, which, for simplicity, is ne-
glected in Eqs. �7� and �8�. In addition, here we are interested
only in the geometric properties of the charge quantum cir-
cuit. The dynamic properties of this circuit are studied fol-
lowing a more canonical approach within a two-level ap-
proximation in Sec. III. The dynamic properties are governed
by the two Josephson tunnel junctions and by the number of
excess Cooper pairs on the island, �n	n̂	n
. To simplify our
derivations, we can then assume n̂=0 and consider only the
capacitance CJ of the two Josephson tunnel junctions but not
their Josephson energy.

We now derive in three steps the geometric part of the
interaction Hamiltonian by means of circuit theory. The pro-
cedure is visualized in Figs. 2�a�–2�c�. The steps are as fol-
lows:

�i� First, we assume that the circuit associated to the
charge qubit is positioned at a voltage antinode22 of both
resonators. Consequently, we can replace the two current

sources in Fig. 2�a� with open circuits, Îra= Îrb=0. Thus, we
can eliminate both Lra and Lrb from the circuit diagram be-
cause they are in series with open circuits.

�ii� Second, we apply the superposition principle of circuit
theory.57 One at the time, we replace each of the two voltage

sources with short circuits, V̂ra=0 or V̂rb=0. This allows us
to split up the circuit in Fig. 2�a� into the two subcircuits in
Fig. 2�b�, which are topologically less complex. As a conse-
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quence, in the respective subcircuits, Crb or Cra can be sub-
stituted with short circuits and all other capacitors oppor-
tunely rearranged. In this way, for the case of cavity A, we
find the small shift capacitance Csa�2CJCga /C�, which
gives the correct angular frequency renormalization of the
resonator, �̃A

corr�2CJCgavA0
2 /C�
. Remarkably, we also find

the second-order cross capacitance Ccr�CgaCgb /C�, corre-
sponding to the geometric second-order coupling between
the resonators. This is equivalent to the result obtained in Eq.
�3� in Sec. II B and is consistent with the simple model of
Eqs. �6�–�8�. We notice that Ccr deviates from the simple
series of the two gate capacitances Cga and Cgb because of
the presence of CJ in C�. For the case of cavity B, Csb
�2CJCgb /C� and �̃B

corr�2CJCgbvB0
2 /C�
 can be derived in

an analogous manner. In Sec. II B, the two renormalization
constants as well as CJ are absorbed in the definitions of
CAA, CBB, and CQQ, respectively.

�iii� Third, we notice that the cross capacitance Ccr, which
is responsible for the geometric second-order interaction be-

tween A and B, is subjected to both quantum voltages V̂ra

and V̂rb. Hence, we can finally draw the circuit diagram in
Fig. 2�c�. Indeed, we could have identified the T network in
Fig. 2�a� �indicated by a dashed box� and transformed it into
the equivalent � network in Fig. 2�c� �also indicated by a
dashed box� in a single step,57 obtaining the same results. We

prefer to explicitly show the steps in Fig. 2�b� for pedagogi-
cal reasons.

The second example is based on a superconducting loop
interrupted by one Josephson tunnel junction �a flux quantum
circuit�. Such a device is also known as radio-frequency �rf�
superconducting quantum interference device �SQUID�. We
choose the rf SQUID here for pure pedagogical reasons. In
fact, our treatment could be extended to the more common
case of three junctions.67,68 The Hamiltonian of an rf SQUID
can be expressed as26,27,32,60

Ĥf =
Q̂2

2CJ
+

��̂ − �x�2

2Lq
− EJ cos�2�

�̂

�0
� , �9�

where Q̂ is the operator for the charge accumulated on the
capacitor CJ associated with the Josephson tunnel junction.

The flux operator �̂ is the conjugated variable of Q̂, i.e.,

��̂ , Q̂�= j
. In analogy to the dimensionless gate charge ng of
the previous example, the flux bias �x��x

dc+��x consists
of a dc and an ac component. The self-inductance of the
superconducting loop is defined as Lq. When the rf SQUID is
coupled to two quantized resonators, we can quantize the
high-frequency excitations performing the transformations

��x→��̂x�MqaiA0j�â†− â�+MqbiB0j�b̂†− b̂�. Here, Mqa and

�
�

�
�� �

�
� �

�
��

�
�

�
�� �

�

�

��

�
�

�
��

� �
�

FIG. 2. Equivalent circuit diagrams for two different implementations of two-resonator circuit QED based on either a charge qubit

��a�–�c�� or a flux qubit ��d�–�f��. Cf. Sec. II C for details. �a� V̂ra and V̂rb: Quantized voltage sources associated with resonators A and B

parallel to the self-capacitances Cra and Crb of the resonators. Îra and Îrb: Quantized current sources associated with resonators A and B in
series with the self-inductances Lra and Lrb of the resonators. The number of excess Cooper pairs on the charge qubit island �big dot� is
�n	n̂	n
. CJ: Capacitance of each of the two Josephson tunnel junctions connecting the island to ground. Cga and Cgb: Coupling capacitances
between the qubit and the two resonators. Cab: First-order cross capacitance between A and B �typically small; dotted line�. The dashed box
marks a T network composed of Cga, 2CJ, and Cgb. �b� Ccr�CgaCgb /C�: Second-order cross capacitance. Csa�2CJCga /C� and Csb

�2CJCgb /C�: Resonator shift capacitances. Cab is neglected for simplicity. �c� The circuits in �b� rearranged as a single � network �dashed
box�. The latter is equivalent to the T network in �a�. The magnitudes of Cra and Crb are increased by the presence of the shift capacitances
Csa and Csb. �d� Two resonators A and B inductively coupled via Mqa and Mqb to a flux qubit with total self-inductance Lq=Lq /2+Lq /2 and

flux operator �̂. The first-order mutual inductance m between the two resonators is neglected to simplify the notation. �e� The disconnected
circuit in �d� is transformed into a connected circuit �Ref. 57�. Again, we can identify a � network �dashed box�. �f� Left side: T network
obtained from the � network in �e�. We identify the second-order mutual inductance Mcr�MqaMqb /Lq and the shift inductances Lsa

�Mqa
2 /Lq and Lsb�Mqb

2 /Lq. Right side: The connected circuit on the left side is transformed into a disconnected circuit �Ref. 57�.
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Mqb are the mutual inductances between the loop and each

resonator. We can then assume �̂=0, perform a two-level
approximation and a RWA, and finally obtain the same inter-
action Hamiltonian as in Eq. �8�. However, in this case the
coefficients are redefined as �̃A��MqaiA0�2 /Lq
, �̃B
��MqbiB0�2 /Lq
, and GAB� iA0iB0MqaMqb /Lq
. The term
with coupling coefficient GAB constitutes the geometric
second-order interaction between A and B. As it appears
clear from the discussion below, once again the renormaliza-
tion terms �̃A and �̃B do not catch the circuit topology prop-
erly. This issue can be clarified by analyzing the circuit dia-
gram drawn in Fig. 2�d�, where all the geometric elements
for this example are shown. The first-order mutual induc-
tance m between the two resonators is neglected to simplify
the notation. Again, the Josephson tunnel junctions respon-
sible for the dynamic behavior are not included.

We now study the geometric part of the interaction Hamil-
tonian between the rf SQUID and the two resonators, follow-
ing a similar path as for the case of the single Cooper-pair
box �cf. Figs. 2�d�–2�f��. The four main transformation steps
are as follows:

�i� First, we assume the circuit corresponding to the flux
qubit to be positioned at a current antinode. Thus, in Fig.
2�e�, we replace all voltage sources and capacitors in Fig.
2�d� with short circuits. The self-inductance of the qubit loop
is split up into two Lq /2 inductances to facilitate the follow-
ing transformation steps.

�ii� Second, a well-known theorem of circuit theory57 al-
lows us to transform the three disconnected circuits in Fig.
2�d� into the connected circuit in Fig. 2�e�. Here, the region
indicated by the dashed box evidently forms a � network.

�iii� Third, a �-to-T-network transformation57 results in
the circuit on the left side of Fig. 2�f�.

�iv� Fourth, applying the inverse theorem of that used in
step �ii� finally allows us to draw the equivalent circuit on the
right side of Fig. 2�f�. Here, Mcr�MqaMqb /Lq represents the
second-order mutual inductance between resonators A and B,
corresponding to the geometric second-order coupling be-
tween them. Remarkably, this coincides with our result ob-
tained in Eq. �3� in Sec. II B and is consistent with the simple
model of Eq. �9�. However, in this model the small shift
inductances Lsa�Mqa

2 /Lq and Lsb�Mqb
2 /Lq �here defined to

be strictly positive� acquire the wrong sign. Our circuit ap-

proach reveals that the correct renormalization constants of
the resonators’ angular frequency are �̃A=−LsaiA0

2 /
 and
�̃B=−LsbiB0

2 /
. This result is also confirmed by our numeri-
cal simulations �cf. Sec. V and Table I�. In Sec. II B, these
renormalization constants are absorbed in the definitions of
MAA and MBB.

III. DERIVATION OF THE QUANTUM SWITCH
HAMILTONIAN

In this section, we analyze the Hamiltonian of a three-
node quantum network as found in Sec. II B. In particular,
we focus on the relevant case of large qubit-resonator detun-
ing, i.e., the dispersive regime of two-resonator circuit QED.
Under this assumption, we are able to derive an effective
Hamiltonian describing a quantum switch between two reso-
nators. We compare the analytical results to those of exten-
sive simulations �cf. Sec. III A�. We also propose a protocol
for the quantum switch operation stressing two possible vari-
ants. One is based on a qubit population inversion and the
other on an adiabatic-shift pulse with the qubit in the energy
ground state �cf. Sec. III B�. Finally, we give a few examples
of advanced applications of the quantum switch and, in gen-
eral, of dispersive two-resonator circuit QED �cf. Sec. III C�.

A. Balancing the geometric and dynamic couplings

We now give the total Hamiltonian of the three-node
quantum network in Figs. 1�a� and 1�b�. In order to avoid
unnecessarily cumbersome calculations, we restrict ourselves
to purely inductive interactions up to geometric second-order
corrections. In this framework, the most suitable quantum
circuit to be used is a flux qubit. Hereafter, all specific pa-
rameters and corresponding simulations refer to this particu-
lar case. Nevertheless, the formalism which we develop re-
mains general and can be extended to purely capacitive
interactions �charge qubits� straightforwardly.

The flux qubit is assumed to be positioned at a current
antinode. As a consequence, the vacuum fluctuations iA0 and
iB0 have maximum values iA0

max and iB0
max at the qubit position

and we can impose vA0=vB0=0. Also, in the standard opera-
tion of a flux qubit no dc voltages are applied, i.e., vdc=0,
and the quasistatic flux bias is usually controlled by an ex-

TABLE I. Relevant parameters for a possible two-resonator circuit QED setup based on a superconducting flux qubit. The various
constants are described in Sec. V and reported in Fig. 2. All inductances are simulated using the version of FASTHENRY for superconducting
materials �Ref. 92�. The capacitances are calculated analytically. All second-order inductances are computed analytically and numerically and
then compared to each other for consistency. We find excellent agreement between the estimates MqaMqb /Lq and m̃−m for the second-order

mutual inductance. Also, the shift inductances Mqa
2 /Lq and Mqb

2 /Lq coincide with their counterparts Lsa�Lrb
� − L̃ra

� and Lsb�Lrb
� − L̃rb

� ,
respectively. These parameters are suitable for the implementation of a superconducting quantum switch.

Lra
� Lra Cra �A iA0��
�A / 2Lra Lq Mqa MqaMqb / Lq +Lsa� Mqa

2 / Lq +Lsb� Mqb
2 / Lq

�pH� �nH� �pF� �mm� �nA� �pH� �pH� �pH� �pH� �pH�
252.781 6.066 74 3.363 69 24 13.8251 784.228 61.2387 4.781 92 +4.782 00 +4.781 84

Lrb
�

�pH�
Lrb

�nH�
Crb

�pF�
�B

�mm�
iB0��
�B / 2Lrb

�nA�
m

�pH�
Mqb

�pH�
m̃−m
�pH�

−Lsa= L̃ra
� −Lra

�

�pH�
−Lsb= L̃rb

� −Lrb
�

�pH�
252.778 6.066 67 3.363 69 24 13.8252 2.901 30 61.2377 4.781 92 −4.781 00 −4.781 00
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ternal coil and not by the cavities �cf. Sec. II A�. Again, we
impose idc=0 and add to the Hamiltonian in Eq. �1� the term

��x
dc−�0 /2�ÎQ. Under all these assumptions and substituting

M�n� of Eq. �1� with M�2� of matrix �5�, we readily obtain

Ĥ� =
1

2

��̂̄z +

1

2

�Q�̂̄x + 
�Aâ†â + 
�Bb̂†b̂ + 
gA�̂̄z�â† + â�

+ 
gB�̂̄z�b̂† + b̂� + 
gAB�â† + â��b̂† + b̂� . �10�

Here, all global energy offsets have been neglected and we
have included both first- and second-order circuit theory con-
tributions. In this equation, 
��2iQ��x

dc−�0 /2� is the qubit
energy bias, �Q��Q�Ec ,EJ� is the qubit gap,26,67 �A
�1 /�MAACAA and �B�1 /�MBBCBB are the angular fre-
quencies of resonators A and B, respectively, gA
� iQiA0MAQ /
 and gB� iQiB0MBQ /
 are the qubit-resonator
coupling coefficients, and, finally, the second-order coupling
coefficient gAB� iA0iB0�m+MAQMQB /MQQ� /
. In general,
gA and gB can be different due to parameter spread during
the sample fabrication. Later, we show that the architecture
proposed here is robust with respect to such imperfections.
We now rotate the system Hamiltonian in Eq. �10� into the
qubit energy eigenbasis �	g
 , 	e
� obtaining

Ĥ = 

�Q

2
�̂z + 
�Aâ†â + 
�Bb̂†b̂ + 
gA cos � �̂z�â† + â�

+ 
gB cos � �̂z�b̂† + b̂� − 
gA sin � �̂x�â† + â�

− 
gB cos � �̂x�b̂† + b̂� + 
gAB�â† + â��b̂† + b̂� . �11�

Here, �Q���2+�Q
2 is the �x

dc-dependent transition fre-
quency of the qubit and ��arctan��Q /�� is the usual mixing
angle. Hereafter, we use the redefined Pauli operators �̂x and
�̂z, where �̂x= �̂++ �̂−, �̂z= �̂+�̂−− �̂−�̂+, and �̂+ and �̂− are
the lowering and raising operators between the qubit energy
ground state 	g
 and excited state 	e
, respectively. Express-

ing Ĥ in an interaction picture with respect to the qubit and

both resonators, â†→ â† exp�+j�At�, â→ â exp�−j�At�, b̂†

→ b̂† exp�+j�Bt�, b̂→ b̂ exp�−j�Bt�, and �̂�

→ �̂� exp��j�Qt�, assuming �A=�B���2�f , and per-
forming a RWA yields

Ĥ̃ = 
 sin � ��̂−�gAâ† + gBb̂†�e−j�t + �̂+�gAâ + gBb̂�ej�t�

+ 
gAB�â†b̂ + âb̂†� . �12�

Here, ���Q−� is the qubit-resonator detuning. The first
two terms of Eq. �12� represent a standard two-mode JC
dynamics.30,69 The last term, instead, constitutes a beam-
splitter-type interaction specific to two-resonator circuit
QED. This interaction is not present in the quantum-optical
version.30,69 The coupling coefficient gAB is typically much
smaller than gA and gB �see below�. However, in the disper-
sive regime �	�	�max�gA,gB,gAB��, gAB becomes compa-
rable to all other dispersive coupling strengths. To gain fur-
ther insights into this matter, we can define two

superoperators �̂†� �̂+�gAâ+gBb̂� and �̂� �̂−�gAâ†+gBb̂†�.
It can be shown that the Dyson series for the evolution

operator associated with the time-dependent Hamiltonian in

Eq. �12� can be rewritten in the exponential form Û

=exp�−jĤ̃efft /
�, where Ĥ̃eff=
��̂† ,�̂� /�+
gAB�â†b̂+ âb̂†�.
Thus

Ĥ̃eff = 

�gA sin ��2

�
�̂z�â†â +

1

2
� + 


�gB sin ��2

�
�̂z�b̂†b̂ +

1

2
�

+ 
�gAgB sin2 �

�
�̂z + gAB��â†b̂ + âb̂†� . �13�

In this Hamiltonian, the first two terms represent dynamic
�ac-Zeeman� shifts �ac-Stark shifts in the case of charge qu-
bits� of the transition angular frequency of resonators A and
B, respectively. If gA=gB�g and we only use eigenstates of
�̂z, the first and second terms of Eq. �13� equally renormalize
�A and �B, respectively. The Hamiltonian in Eq. �13� can be
further simplified through an additional unitary transforma-

tion described by Û0=exp�jĤ0t /
�, where Ĥ0

�
�gA
2 sin2 � /���̂z�â†â+1 /2�+
�gB

2 sin2 � /���̂z�b̂†b̂+1 /2�.
When gA=gB�g, this transformation yields the final effec-
tive Hamiltonian

Ĥeff = 
�g2 sin2 �

�
�̂z + gAB��â†b̂ + âb̂†� , �14�

which constitutes the second main result of this work. This
Hamiltonian is the key ingredient for the implementation of a
quantum switch between the two resonators. In fact, it
clearly represents a tunable interaction between A and B
characterized by the effective coupling coefficients

gsw
	g
 � gAB −

g2 sin2 �

�
,

gsw
	e
 � gAB +

g2 sin2 �

�
�15�

for the qubit in 	g
 or 	e
, respectively. The switching of such
an interaction triggers, or prevents, the exchange of quantum
information between A and B. On the one hand, the first part
of this interaction is a purely geometric coupling, which is
constant and qubit-state independent. On the other hand, the
second part is a dynamic coupling, which depends on the
state of the qubit. The switch setting condition

g2 sin2 �

	�	
= 	gAB	 �16�

can easily be fulfilled varying �, changing sin �, or inducing
ac-Zeeman or -Stark shifts.6 In the special case of a charge
qubit, not treated here in detail, this task can also be accom-
plished by modifying the qubit transition angular frequency
�Q via a suitable quasistatic magnetic field.1 This allows one
to keep the qubit at the degeneracy point. Here, we focus on
the first option, i.e., finding a suitable qubit bias for which
the detuning � fulfills the relation in Eq. �16�. For a flux
qubit, this can be realized by polarizing the qubit by means
of an external flux.
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To better understand the switch setting condition, we nu-
merically diagonalize the entire system Hamiltonian in Eq.
�10�, without performing any approximation. The results are
presented in Fig. 3, which shows the energy spectrum of the
quantum switch Hamiltonian and the effective coupling co-
efficient 	2gsw

	g
	 for a flux qubit with iQ=370 nA, �Q /2�
=4 GHz, f =3.5 GHz, g /2�=472 MHz, and gAB /2�
=2.2 MHz. The parameters for the flux qubit are chosen
from our previous experimental works,12,58 whereas the three
coupling coefficients are the result of detailed simulations
�cf. Sec. V�. It is worth mentioning that large vacuum Rabi
couplings g /2� on the order of 500 MHz have already been
achieved both for flux and charge qubits.4,25 We have chosen
the qubit to be already detuned from both resonators by 0.5
GHz when biased at the flux degeneracy point. Moving suf-
ficiently far from the qubit degeneracy point enables us to
increase the qubit-resonator detuning such that the system
can be modeled by the Hamiltonian in Eq. �14�.

Figure 3�a� shows the differences between the first nine
excited energy levels of the quantum switch Hamiltonian and
the ground-state energy level, �Ei�Ei−E0, with i
= �1, . . . ,10�, as a function of the frustration fx��x

dc /�0.
Here, Ei is the energy level of the ith excited state and E0 is
that of the ground state. Due to the qubit-resonator detuning,
the two lowest energy differences �blue �dark gray� and
green �light gray� lines� correspond to the modified transition
frequencies of the two resonators. Owing to the interaction

with the qubit, these lines are not flat. This effect becomes
particularly evident in the region close to the qubit degen-
eracy point, where dispersivity is reduced. In this region, the
third energy difference �hyperbolic shape, magenta �middle
gray� line� represents the modified transition frequency of
the qubit. When moving away from the qubit degeneracy
point, a crossing between the modified resonator lines is en-
countered, as clearly shown in Fig. 3�b� �see thick blue �dark
gray� and thin green �light gray� lines�. This crossing repre-
sents the switch setting condition in Eq. �16�. Figures 3�c�
and 3�d� show the absolute value of the flux-dependent cou-
pling coefficient 	2gsw

	g
	 in the frustration windows in Figs.
3�a� and 3�b�, respectively. The switch setting condition
	2gsw

	g
	=0 is reached at fx
dc�0.4938.

A comparison between the analytic expression in Eq. �15�
with the qubit in 	g
 �dashed green �light gray� lines� and a
numerical estimate of the effective coupling coefficient
	2gsw

	g
	 �solid blue �dark gray� lines� is shown in Fig. 4. To
clarify similarities and differences between analytical and
numerical calculations, we choose two different sets of pa-
rameters. In Fig. 4�a�, the center frequencies of the two reso-
nators are set to be fA= fB= f =2.7 GHz, which implies a
reduced g /2� �364 MHz and gAB�1.3 MHz. All the
other parameters are equal to those used to obtain the results
in Fig. 3. In Fig. 4�b�, we use the same set of parameters
utilized to obtain the results in Fig. 3, i.e., fA= fB
= f=3.5 GHz and the corresponding coupling doefficients. In
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FIG. 3. �Color online� Simulation of the Hamiltonian in Eq. �10� in the dispersive regime �cf. Sec. III A for a detailed description of the
system parameters�. �a� The differences between the first nine excited energy levels of the quantum switch Hamiltonian and the ground-state
energy level, �E, as a function of the frustration fx

dc��x
dc /�0. The two lowest lines �blue �dark gray� and green �light gray�, respectively�

are associated with resonators A and B. The dispersive action of the qubit, which modifies the shape of the resonator lines, is clearly
noticeable in the vicinity of the qubit degeneracy point. In this region, the third energy difference �hyperbolic shape, magenta �middle gray�
line� represents the modified transition frequency of the qubit. �b� Closeup of the area indicated by the black arrow in �a�. Here, the two
modified resonator lines �thick blue �dark gray� and thin green �light gray�� cross each other. �c� Quantum switch coupling coefficient 	2gsw

	g
	
extrapolated from the energy spectrum in �a� plotted versus fx

dc. �d� Closeup of the area indicated by the black arrow in �c�. The switch setting
condition 	2gsw

	g
	=0 is reached at fx
dc�0.4938.
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Fig. 4�a�, analytics and numerics agree over the entire frus-
tration window. The inset shows that the switch setting con-
dition obtained from the numerical simulation is only
slightly shifted with respect to the analytical prediction. Also
in Fig. 4�b�, the agreement between analytical and numerical
estimates is good far away from the qubit degeneracy point.
However, closer to it the qubit and the two resonators are not
detuned enough to guarantee dispersivity. Therefore, analyt-
ics and numerics start to deviate, as expected. Again, the
inset shows that the switch setting condition can be fulfilled.
It is worth pointing out that both analytical and numerical
estimates converge to the value 	2gAB	 in the limit of large
detuning. We find 	2gAB	 /2��2.6 MHz and 	2gAB	 /2�
�4.4 MHz from the simulations that produce Figs. 4�a� and
4�b�, respectively. Additionally, we have two important re-
marks on the results shown in Figs. 4�a� and 4�b�. First, the
change of the coupling constants g and gAB between the two
parameter sets is a direct consequence of altering the resona-
tor frequency. Although the mutual inductances remain unaf-
fected, the vacuum �zero-point� currents are changed. Sec-
ond, the fact that the switch setting condition occurs at
almost the same frustration value for both parameters sets is
due to our specific choice of these parameters.

Finally, we demonstrate that the quantum switch Hamil-
tonian is robust against parameter spread due to fabrication
inaccuracies. Typically, for a center frequency of 5 GHz, the
expected spread around this value is approximately70

�10 MHz for two resonators fabricated on the same chip.
Also, the coupling coefficients gA and gB can differ slightly.
In this case, a generalized effective Hamiltonian for the
quantum switch can be derived,23

Ĥeff
gen = 


�gA sin ��2

�A
�̂zâ

†â + 

�gB sin ��2

�B
�̂zb̂

†b̂

+ 
�gAgB sin2 �

2
� 1

�A
+

1

�B
��̂z + gAB�

	�â†b̂e+j�ABt + âb̂†e−j�ABt� , �17�

where �A��Q−�A, �B��Q−�B, and �AB��A−�B.
From Eq. �17�, we can deduce the generalized coupling co-
efficient of the switch, gsw

	g
,	e
�gAB�gAgB sin2 ��1 /2�A
+1 /2�B� for the qubit in the ground state 	g
 or excited state
	e
, respectively. As a consequence, the generalized switch
setting condition becomes

�gAgB sin2 �

2
� 1

�A
+

1

�B
�� = 	gAB	 . �18�

This condition is displayed in Fig. 5 �dashed green �light
gray� line� as a function of the frustration fx

dc. Here, we as-
sume two resonators with center frequencies fA=3.5 GHz
and fB=3.5 GHz+35 MHz. This corresponds to a relatively
large center frequency spread70 of 1%. In addition, we
choose the two coupling coefficients gA /2�=472 MHz and
gB /2�=549 MHz to differ by approximately 15%. It is re-
markable that, also in this more general case, the switch set-
ting condition can be fulfilled easily. We confirm this result
by means of numerical simulations �solid blue �dark gray�
line in Fig. 5� of the full Hamiltonian in Eq. �10�, assuming
fabrication imperfections. Interestingly, in contrast to the
case where �A=�B and gA=gB, we observe a different be-
havior of the analytical and numerical curves in Fig. 5 when
moving far away from the qubit degeneracy point. The rea-
sons behind this fact rely on the conditions used to obtain the
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FIG. 4. �Color online� Comparison between the fx
dc dependence of the analytical expression for the effective coupling coefficient 	2gsw

	g
	
obtained from Eq. �15� and the one found by numerically diagonalizing the Hamiltonian in Eq. �10�. �a� We choose a center frequency
fA= fB= f =2.7 GHz for the two resonators, which implies a reduced g /2� �364 MHz and gAB�1.3 MHz. All the other parameters are
equal to those used to obtain the results in Fig. 3. The analytical �dashed green �light gray� line� and the numerical �solid blue �dark gray�
line� results are in excellent agreement. In the large-detuning limit far away from the qubit degeneracy point, 	2gsw

	g
	 saturates to the value
	2gAB	�2.6 MHz. Inset: Closeup of the region near the switch setting condition. �b� Here, we use the same set of parameters utlized to
obtain the results in Fig. 3, i.e., a center frequency fA= fB= f =3.5 GHz for the two resonators and the corresponding coupling coefficients.
The analytical �dashed green �light gray� line� and numerical �solid blue �dark gray� line� results are in good agreement away from the qubit
degeneracy point. Closer to it they diverge �cf. Sec. III A for more details�. In the large-detuning limit far away from the qubit degeneracy
point, 	2gsw

	g
	 saturates to the value 	2gAB	�4.4 MHz. Inset: Closeup of the region near the switch setting condition.
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second-order Hamiltonian in Eq. �17�. If �AB
�max�gAgB sin2 � /2�A,gAgB sin2 � /2�B,gAB�, as for the
parameters chosen here, this Hamiltonian does not represent
an accurate approximation anymore. In this case, as ex-
pected, only partial agreement between analytics and numer-
ics is found. Nevertheless, a clear switch setting condition is
obtained in both cases. We notice that the numerical switch
setting condition is shifted toward the degeneracy point with
respect to the analytical solution. This is due to the detuning
�AB present in Eq. �17�, which is not accounted for when
plotting the analytical solution. All the above considerations
clearly show that the requirements on the sample fabrication
are substantially relaxed.

B. Quantum switch protocol

We now propose a possible switching protocol based on
three steps and discuss two different variants to shift from
the zero-coupling to a finite-coupling condition characterized
by a coupling coefficient gsw

on. It is important to stress that this
protocol is independent of the specific implementation �ca-
pacitive or inductive� of the switch. For definiteness, we
choose a quantum switch based on a flux qubit in the follow-
ing:

�i� First, we initialize the qubit in the ground state 	g
.
�ii� Second, in order to fulfill the switch setting condition,

we choose the appropriate detuning � by changing the qua-
sistatic bias of the qubit. For the switch operation to be prac-
tical, we assume �=�10. In this way, the sign of the co-
efficient in front of the �̂z operator in Eq. �14� remains
positive and, as a consequence, the switch is off in the
ground state 	g
, i.e., gsw

	g
=0.
�iii� Third, the state of the quantum switch can now be

changed from off to on in two different ways, �a� or �b�.
�a� Population inversion. The qubit is maintained at the

bias point preset in �ii�. Its population is then inverted from
	g
 to 	e
, e.g., applying a Rabi � pulse of duration t�. Such
a pulse effectively changes the switch to the on state, gsw

	e


=2gAB. In this case, gsw
on =2gAB. Under these conditions, the

two resonators are effectively coupled and the A-to-B trans-
fer time is t=� /2gsw

on, which also constitutes the required
time scale for most of the operations to be discussed in Sec.
III C.

�b� Adiabatic-shift pulse. We opportunely change the qua-
sistatic bias of the qubit by applying an adiabatic-shift
pulse.58 In this way, the qubit transition frequency becomes
effectively modified. As a consequence, the detuning � is
changed from �1 to �2 such that gsw

	g
= g̃sw=gAB
−g2 sin2 � /�2�0. In other words, the geometric and dy-
namic coupling coefficients are not balanced against each
other anymore and the switch is set to the on-state. In this
case, gsw

on = g̃sw. The rise time trise of the shift pulse has to
fulfill the condition3,58 2� /gsw

on � trise�max�2� /�Q,2� /��.
Variant �b� strongly benefits from the dependence of g̃sw

on the external quasistatic bias of the qubit �see Figs. 3�c�
and 3�d��. We can distinguish between two possible regimes.
The first regime is for a flux bias close to the qubit degen-
eracy point, where the qubit-resonator detuning is reduced
and, thus, �2��1. In this case, the dynamic contribution to
g̃sw dominates over the geometric one. This enables us to
achieve very large resonator-resonator coupling strengths,
which is a highly desirable condition for fast quantum opera-
tions �e.g., cf. Sec. III C�. The second regime is for a flux
bias far away from the qubit degeneracy point, where the
qubit-resonator detuning is increased and, thus, �2�1. In
this case, the geometric contribution to g̃sw dominates over
the dynamic one. Since very far away from the qubit degen-
eracy point g̃sw→ 	2gAB	 �cf. Sec. III A and Figs. 4�a� and
4�b��, operating the system in the second regime allows us to
probe the pure geometric coupling between A and B. This
would constitute a direct measurement of the geometric
second-order coupling when MAQMQB /MQQ�m.

C. Advanced applications: Nonclassical states and
entanglement

We now provide a few examples showing how the quan-
tum switch architecture can be exploited to create nonclassi-
cal states of the microwave radiation as well as entanglement
of the resonators and qubit degrees of freedom. In this sub-
section, when we discuss the qubit, we refer to the one used
for the quantum switch operation. If the presence of another
qubit is required, we refer to it as the auxiliary qubit.

1. Fock state transfer and entanglement between the resonators

First, we assume the quantum switch to be turned off, e.g.,
following the protocol outlined in Sec. III B with the qubit in
the ground state 	g
. In addition, we assume resonator A to be
initially prepared in a Fock state 	1
A, while cavity B remains
in the vacuum state 	0
B. Following the lines of Ref. 7, for
example, a Fock state 	1
A can be created in A by means of
an auxiliary qubit coupled to it. A population inversion of the
auxiliary qubit �via a � pulse� and its subsequent relaxation
suffice to achieve this purpose. Then, we turn on the quan-
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FIG. 5. �Color online� Robustness of the quantum against fab-
rication imperfections. Solid blue �dark gray� line: Numerical simu-
lation of the quantum switch effective coupling coefficient 	2gsw

	g
	 as
a function of the frustration fx

dc. Here, we assume a relatively large
spread of 1% for the resonators’ center frequencies �Ref. 70� and a
difference of approximately 15% between gA and gB. Dashed green
�light gray� line: Plot of 	2gsw

	g
	 extracted from the generalized
switch setting condition in Eq. �18� for the same parameter spread
as in the numerical simulations. For both the analytical and the
numerical results, the switch setting condition is fulfilled �see black
arrows�.
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tum switch for a certain time t following either one of the
two variants �a� or �b� introduced in Sec. III B. The initial
states are 	e
	1
A	0
B and 	g
	1
A	0
B for �a� and �b�, respec-
tively. The quantum switch is now characterized by an effec-
tive coupling gsw

on and the dynamics associated with the
Hamiltonian in Eq. �14� is activated for the time t. In this
manner, a coherent linear superposition of bipartite states
containing a Fock state single photon3,7,8,60,71 can be created,

cos�gsw
ont�	1
A	0
B + ej�/2 sin�gsw

ont�	0
A	1
B, �19�

where the qubit state does not change and qubit and resona-
tors remain disentangled. If we choose to wait for a time t
=� /2gsw

on, we can exploit Eq. �19� as a mechanism for the
transferring of a Fock state from resonator A to resonator B,
	1
A	0
B→ 	0
A	1
B. In this case, the resonators also remain
disentangled. It is worth mentioning that the controlled trans-
fer of a Fock state between two remote locations constitutes
the basis of several quantum information devices.72 If we
choose to wait for a time t=� /4gsw

on instead, we can achieve
maximal entanglement between the two remote resonators.
This goes beyond the results obtained in atomic systems,
where two nondegenerate orthogonally polarized modes of
the same cavity have been used to create mode
entanglement.30

2. Tripartite entanglement and Greenberger-Horne-Zeilinger
states

We follow a modified version of variant �a� of the switch-
ing protocol. We start from the same initial conditions as in
the previous example. Resonator A is in 	1
A and resonator B
is in 	0
B. The qubit is in 	g
 and the switch setting condition
is fulfilled; i.e., the switch is off. We then apply a � /2 pulse
to the qubit, bringing it into the symmetric superposition73

�	g
+ 	e
� /�2. Then, the state of the system is still disen-
tangled and can be written as

	g
	1
A	0
B + 	e
	1
A	0
B

�2
. �20�

Now, the Hamiltonian in Eq. �14� yields the time evolution

1
�2

�	g
	1
A	0
B

+ cos�gsw
ont�	e
	1
A	0
B + ej�/2 sin�gsw

ont�	e
	0
A	1
B�
�21�

for the state of the quantum switch. Under these conditions,
the dynamics displayed in Eq. �21� is characterized by two
distinct processes. The first one acts on the 	g
	1
A	0
B part of
the initial state of Eq. �20�. This process is actually frozen
because the quantum switch is turned off when the qubit is in
	g
. The second process, instead, acts on the 	e
	1
A	0
B part
of the initial state, starting the transfer of a single photon
from resonator A to resonator B and vice versa. If during
such evolution we wait for a time t=� /2gsw

on, a tripartite en-
tangled state

	g
	1
A	0
B + ej�/2	e
	0
A	1
B

�2
�22�

of the Greenberger-Horne-Zeilinger �GHZ� class74 is gener-
ated. Here, the two resonators can be interpreted as photonic
qubits because only the Fock states 	0
A,B and 	1
A,B are in-
volved. Hence, Eq. �22� represents a state containing maxi-
mal entanglement for a three-qubit system, which consists of
two photonic qubits and one superconducting �charge or
flux� qubit. The generation of GHZ states is important for the
study of the properties of genuine multipartite entanglement.
Interestingly, the quantum nature of our switch is embodied
in the linear superposition of 	g
	1
A	0
B and 	e
	1
A	0
B of
the initial state of Eq. �20�.

3. Entanglement of coherent states

Finally, we show how to produce entangled coherent
states of the intracavity microwave fields of the two resona-
tors. These are prototypical examples of the vast class of
states referred to as Schrödinger cat states.21,43,75–77 This
time, we start with cavity A populated by a coherent state
	�
A instead of a Fock state 	1
A. Again, cavity B is in the
vacuum state 	0
B and the qubit in the symmetric superposi-
tion state �	g
+ 	e
� /�2, i.e., a modified version of variant �a�
of the switching protocol is one more time employed. The
total disentangled initial state can be written as

	g
	�
A	0
B + 	e
	�
A	0
B

�2
. �23�

The resulting dynamics associated with the Hamiltonian in
Eq. �14� yields a time evolution similar to that shown for
Fock states in Eq. �21�. In this case, the part of the evolution
involving 	e
 can be calculated either quantum mechanically
or by employing a semiclassical model. In both cases, after a
waiting time t=� /2gsw

on, resonator B is in the state 	�
B and A
is in the vacuum state 	0
A. However, Eq. �23� contains an
initial linear superposition of 	g
	�
A	0
B and 	e
	�
A	0
B, re-
quiring a quantum-mechanical treatment of the time evolu-
tion. From this, one finds that after the waiting time t
=� /2gsw

on, the quantum switch operation creates the tripartite
GHZ-type entangled state

	g
	�
A	0
B + ej�	e
	0
A	�
B

�2
, �24�

where � is an arbitrary phase. Again, the creation of such
states clearly reveals the quantum nature of our switch,
showing a departure from standard classical switches.57 Re-
markably, the state of Eq. �24� describes the entanglement of
coherent �“classical”� states in both resonators. This feature
is peculiar to our quantum switch and cannot easily be re-
produced in atomic systems.30 In principle, in the absence of
dissipation the quantum switch dynamics continues transfer-
ring back the coherent state to cavity A. In order to stop this
evolution, an ultimate measurement of the qubit along the x
axis of the Bloch sphere7,78 is necessary. This corresponds to
a projection associated with the Pauli operator �̂x, which
creates the two-resonator entangled state
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	�
A	0
B + ej�	0
A	�
B

�2
. �25�

This state is decoupled from the qubit degree of freedom.
Obviously, all the protocols discussed above need suitable

measurement schemes to be implemented in reality. For in-
stance, it is desirable to measure the transmitted microwave
field through both resonators and, eventually, opportune
cross correlations between them by means of a double het-
erodyne detection apparatus similar to that in Ref. 60. In
addition, a direct measurement of the qubit state, e.g., by
means of a dc SQUID coupled to it3,12 would allow for the
full characterization of the quantum switch device. In sum-
mary, we show that a rich landscape of nonclassical and
multipartite entangled states can be created and measured by
means of our quantum switch in two-resonator circuit QED.

IV. TREATMENT OF DECOHERENCE

The discussion in Secs. II and III implicitly assumes pure
quantum states. In reality, however, a quantum system gradu-
ally decays into an incoherent mixed state during its time
evolution. This process, called decoherence, is due to the
entanglement of the system with its environment and it is
known to be a critical issue for solid-state quantum circuits.
Since it is difficult to decouple these circuits from the large
number of environmental degrees of freedom to which they
are exposed, their typical decoherence rates cannot easily be
minimized. Usually, they are in the range from 1 MHz to 1
GHz, depending on the specific implementation. In this sec-
tion, we discuss the impact of the three most relevant deco-
herence mechanisms on the quantum switch architecture.
These are, first, the population decay of resonators A and B
with rates �A and �B, respectively; second, the qubit relax-
ation from the energy excited state to the ground state at a
rate �r due to high-frequency noise; and third, the qubit
dephasing �loss of phase coherence� at a pure dephasing rate
�� due to low-frequency noise. We show by means of de-
tailed analytical derivations that, despite decoherence mecha-
nisms, a working quantum switch can be realized with
readily available superconducting qubits and resonators.

Decoherence processes are most naturally described in the
qubit energy eigenbasis �	g
 , 	e
�. Under the Markov approxi-
mation, the time evolution of the density matrix of the quan-

tum switch Hamiltonian Ĥ in Eq. �11� is described by the
master equation

�̇̂ =
1

j

�Ĥ�̂ − �̂Ĥ� + �

n=1

4

L̂n�̂ . �26�

Here, �̇̂��� /�t��̂ and L̂n is the Lindblad superoperator de-

fined as L̂n�̂��n�X̂n�̂X̂n
†− X̂n

†X̂n�̂ /2− �̂X̂n
†X̂n /2�. The indices

n=1,2 ,3 ,4 label the decay of resonator A, the decay of reso-
nator B, qubit relaxation, and qubit dephasing, respectively.

Consequently, the generating operators are X̂1� â, X̂1
†� â†,

X̂2� b̂, X̂2
†� b̂†, X̂3� �̂−, X̂3

†� �̂+, and X̂4= X̂4
†� �̂z. The cor-

responding decoherence rates are �1��A, �2��B, �3��r,
and �4��� /2. For the resonators, �A and �B are often ex-

pressed in terms of the corresponding loaded quality factors
QA and QB, �A��A /QA and �B��B /QB, respectively. Al-
though in general all four processes coexist, in most experi-
mental situations one of them dominates over the others. In
fact, it is a common experimental scenario that ����r, for
example in the special case of a flux qubit operated away
from the degeneracy point �see, e.g., Ref. 58�. In this situa-
tion, we can extract pessimistic relaxation and dephasing
rates from the literature,58,79–81 �r�1 MHz and ��

�200 MHz. In other words, dephasing is the dominating
source of qubit decoherence.82 The decay rates of the reso-
nators can be engineered such that70 �A,�B��r���. For
these reasons, hereafter we focus on dephasing mechanisms
only. Hence, we analyze the following simplified master
equation:

�̇̂ =
1

j

�Ĥ�̂ − �̂Ĥ� + L̂��̂ , �27�

where L̂��̂� L̂4�̂= ��� /2���z�̂�̂z− �̂�.
The impact of qubit dephasing on the switch operation

depends on the chosen protocol �cf. Sec. III B�. When em-
ploying the population-inversion protocol, qubit dephasing
occurs within the duration time t� of the control � pulses.
The time t� coincides with the inverse of the qubit Rabi
frequency and can be reduced to less than 1 ns using high
driving power.83 In this way, the time window during which
the qubit is sensitive to dephasing is substantially shortened.
However, it is more favorable to resort to the adiabatic-shift
pulse protocol. In this case, the qubit always remains in 	g
,
resulting in a complete elimination of pulse-induced dephas-
ing. The relevant time scale during which dephasing occurs
is therefore set by the operation time of the switch between
two on-off events. Naturally, this time should be as long as
possible if we want to perform many operations.

The effect of dephasing during the switch operation time
is better understood by inspecting the effective quantum

switch Hamiltonian Ĥeff in Eq. �14�. In Sec. III A, we deduce
this effective Hamiltonian by means of a Dyson series ex-
pansion. This approach is very powerful and compact when
dealing with the analysis of a unitary evolution. However,
when treating master equations, we prefer to utilize
a variant of the well-known Schrieffer-Wolff unitary

transformation,22,84 ÛĤÛ†, where

Û � exp�gA sin �

�
��̂−â† − �̂+â� +

gB sin �

�
��̂−b̂† − �̂+b̂��

�28�

and Û† is its Hermitian conjugate. In the large-detuning re-
gime, gA sin �, gB sin ���, we can neglect all terms of or-
ders �gA sin � /��2, �gB sin � /��2, gAgB sin2 � /�2, or higher.
After a transformation into an interaction picture with re-
spect to the qubit and both resonators �cf. Sec. III A� and

performing opportune RWAs, we obtain again Ĥeff of Eq.
�14�. The master equation governing the time evolution of

the effective density matrix �̂eff� Û�̂Û† then becomes
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�̇̂eff =
1

j

�Ĥeff�̂

eff − �̂effĤeff� + L̂�
eff�̂eff. �29�

The analysis is complicated by the fact that also the Lindblad

superoperator L̂�̂ has to be transformed. For the sake of sim-
plicity, we can assume gA=gB�g and find

L̂�
eff�̂eff � L̂��̂eff + 2�� 	 O��g sin �

�
�2� . �30�

When deriving this expression, all terms of O�g sin � /�� are
explicitly neglected by a RWA. This approximation relies on
the condition ��� /��g sin ���, which is well satisfied in
the large-detuning regime as long as ����. The latter re-
quirement can easily be met by most types of existing super-

conducting qubits. In the frame of Ĥeff, L̂��̂eff has the stan-
dard Lindblad dephasing structure and the qubit appears only
in the form of �̂z operators. Since the initial state of the
switch operation is characterized by either no �adiabatic-shift
pulse protocol� or only very small �population-inversion pro-

tocol� qubit coherences, the effect of L̂��̂eff on the time evo-
lution of the system is negligible. All other nonvanishing
terms are comprised in the expression 2��

	O��g sin � /��2� in Eq. �30� and scale with a factor smaller
than ��

eff�2���g sin � /��2. Hence, the operation of the
quantum switch is robust against qubit dephasing on a char-
acteristic time scale T�

eff=1 /��
eff�1 /��. For completeness, it

is important to mention that the higher-order terms in Eq.
�30� can contain combinations of operators such as â†â and

b̂†b̂. In this case, T�
eff would be reduced for a large number of

photons populating the resonators. Fortunately, this does not
constitute a major issue since the most interesting applica-
tions of a quantum switch require that the number of photons
in the resonators is on the order of 1.

In summary, we show that for suitably engineered cavities
the quantum switch operation time for the adiabatic-shift
pulse protocol is limited only by the effective qubit dephas-
ing time T�

eff. The latter is strongly enhanced with respect to
the intrinsic dephasing time T��1 /��. In this sense, the
quantum switch is superior to the dual setup, where two qu-
bits are dispersively coupled via one cavity bus.6 Moreover,
the intrinsic dephasing time T� and, consequently, T�

eff are
further enhanced by choosing a shift pulse which sets the
on-state bias near the qubit degeneracy point.58 As explained
in Sec. III B, this regime takes place for a qubit-resonator
detuning �2��1. In this case, the switch coupling coeffi-
cient is also substantially increased because of a dominating
dynamic interaction. As a consequence, this option is par-
ticularly appealing in the context of the advanced applica-
tions discussed in Sec. III C. Finally, we notice that for the
population-inversion protocol, the switch operation time
could be limited by the qubit relaxation time Tr�1 /�r. How-
ever, the switch setting condition is typically fulfilled for a
bias away from the qubit degeneracy point. There, Tr is con-
siderably enhanced by both a reduced58 sin � and the Purcell
effect of the cavities.22

V. EXAMPLE OF TWO-RESONATOR CIRCUIT QED
WITH A FLUX QUBIT

In this section, we focus on the geometry sketched in Fig.
1�c� and present one specific implementation of two-
resonator circuit QED. As a particular case, the described
setup can be operated as a superconducting quantum switch.
In this example, we consider microstrip resonators. Coplanar
waveguide resonators can also be used without significantly
affecting our main results. In addition, we choose a flux qubit
because this is our main topic of research.12,58,60,81 Moreover,
as shown in Sec. III A, the dynamic properties of the quan-
tum switch are independent of specific implementations. As a
consequence, in this section we concentrate on its geometric
properties only. It is worth mentioning again that such prop-
erties are inherent to circuit QED architectures and constitute
a fundamental departure from quantum-optical systems.

In Figs. 6�a� and 6�b�, the design of a possible two-
resonator circuit QED setup is shown. The overall structure
is composed of two superconducting microstrip transmission
lines, which are bounded by input and output capacitors,
Ca,in, Cb,in, Ca,out, and Cb,out. This geometrical configuration
forms the two resonators A and B. The input and output
capacitors also determine the loaded or external quality fac-
tors QA and QB of the two resonators.85 Both A and B are
characterized by a length �m, which defines their center fre-
quencies fA and fB. We choose �m=�m /2=12 mm, where
�m��A=�B is the full wavelength of the standing waves on
the resonators. The superconducting loop of the flux qubit
circuit is positioned at the current antinode of the two �m /2
resonators.

In Fig. 6�c�, only the two microstrip resonators A and B
are considered. They are chosen to have a width Wm
=10 �m and a thickness tm=100 nm. The height of the di-
electric substrate between each microstrip and the corre-
sponding ground plane is Hs=12.3 �m. The substrate can
opportunely be made of different materials, such as, for ex-
ample, silicon, sapphire, amorphous hydrogenated silicon, or
silicon oxide, depending on the experimental necessities. A
detailed study on the properties of a variety of dielectrics and
on the dissipation processes of superconducting on-chip
resonators can be found in Refs. 86–90. The aspect ratio
Wm /Hs is engineered to guarantee a line characteristic im-
pedance Zc�50 �, even if this is not a strict requirement
for the resonators to function properly.91 The remaining di-
mensions of our system are shown in Fig. 6�b�: The lateral
dimensions �q1=200 �m and �q2=87 �m of the qubit loop,
the width Wq=1 �m of each line forming the qubit loop, the
interspace dmq=1 �m between qubit and resonators, and the
thickness tq�=tm�=100 nm of the qubit lines. The dimen-
sions of the qubit loop are chosen to optimize the qubit-
resonator coupling strengths. This geometry results in a rela-
tively large inductance Lq�780 pH �number obtained from
FASTHENRY simulations;92 cf. Table I�. Despite the large self-
inductance Lq, reasonable qubit coherence times are expected
�see, e.g., Refs. 25 and 93�. Moreover, in light of Sec. IV
these coherence times easily suffice for the operation of a
superconducting quantum switch, where the qubit acts as a
mere mediator for the exchange of virtual excitations.

In our numerical simulations �cf. Appendix B�, we restrict
ourselves to the region indicated by the black dashed box in
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Fig. 6�a�, closeups of which are shown in Fig. 6�b� and, in
the absence of the flux qubit loop, in Fig. 6�c�. This region is
characterized by a length �sim=500 �m of the resonators
and is centered at a position where the magnetic field reaches
a maximum �antinode� and the electric field reaches a mini-
mum �node�. We notice that magnetic and electric fields can
equivalently be expressed in terms of currents and voltages,
respectively. There are two main hypotheses behind the va-
lidity of our simulation results for the entire two-resonator-
qubit system. These are the uniformity of the electromag-
netic field �voltage and current� in the simulated region and
the abruptly94 increasing geometric distance between resona-
tors A and B outside of it �see sketch in Fig. 6�a��. The three
main implications of the above assumptions are explained in
the following: First, all coupling strengths are dominated by
inductive interactions and there are no appreciable capacitive

ones. Inside the simulated region, in fact, the voltage is prac-
tically characterized by a node, which results in a vanishing
coupling coefficient. Outside the simulated region, the effec-
tive distance deff between the cavities strongly increases to-
gether with the geometric one.95,96 As a consequence, the
geometric first-order capacitance c�1 /deff becomes negli-
gible. Second, the coupling coefficients between qubit and
resonators can be obtained without integrating over the spa-
tial distribution of the mode. This is because of the unifor-
mity of the field, which, for all practical purposes, is constant
over the restricted simulated region. Third, the geometric
first-order coupling between the two resonators, which is
proportional to their mutual inductance m, is still accurately
determined. In fact, outside the simulated region any addi-
tional contribution to m becomes negligible. For all the rea-
sons mentioned above, we are allowed to use the FASTHENRY

���� �����
�		


FIG. 6. �Color online� A possible setup for two-resonator circuit QED with a flux qubit. �a� Overall structure �dimensions not in scale�.
Two microstrip resonators A and B �thick blue lines� of length �m simultaneously coupled to a flux qubit loop �magenta �middle gray�
rectangle�. Ca,in, Cb,in, Ca,out, and Cb,out: Input and output capacitors for A and B. The dashed black box indicates the region of the closeup
shown in �b�. �sim: Length of the region used for the FASTHENRY �Ref. 92� simulations. �b� Closeup of the region which contains the flux qubit
loop in �a�. �q1 and �q2: Qubit loop lateral dimensions. Wq: Width of the qubit lines. dmq: Distance between the qubit and each resonator. The

dashed black line denoted as S̃ marks the cross section reported on the top part of the panel. tq: Thickness of the qubit loop lines. �c� Same
as �b� but without the qubit loop. Wm and tm: Width and thickness �see cross section S� of the two microstrip resonators. Hs: Height of the
dielectric substrate. The reference axis 0z is also indicated �cf. Appendix B�. Both in �b� and �c�, ain, aout, bin, and bout represent the input and
output probing ports used in the simulations. �d� Current-density distribution at high frequency �5 GHz� for the structures drawn in �c�. The
currents are represented by small arrows, green �light gray� for resonator A and blue �dark gray� for resonator B. �e� Current-density
distribution at high frequency �5 GHz� for the structures drawn in �b�. The two black arrows indicate two high-current-density channels
between the two resonators. The dashed black box marks the close-up area shown in �f�. �f� Closeup of one of the two geometric
second-order interaction channels.
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�Ref. 92� calculation software for our simulations. In this
section, we utilize two different versions of FASTHENRY, one
for superconducting materials and one for almost perfectly
conducting ones. We use the second version only when we
want to obtain current-density distributions or the frequency
dependence of an inductance. In these cases, due to the tech-
nical limitations of the software, we cannot use the version
valid for superconductors.92

Figures 6�d� and 6�e� display the simulated current-
density distributions at a probing frequency of 5 GHz �high-
frequency regime� for the different structures drawn in Figs.
6�c� and 6�b�, respectively. Similar results can be found in a
range between 1 and 10 GHz �data not shown�. Without loss
of generality, these simulations are performed for almost per-
fect conductors using a FASTHENRY version which does not
support superconductivity. The results in Fig. 6�d� clearly
show that the two microstrip lines correspond to regions
characterized by a high current density separated by a region
with a low current density in the absence of the flux qubit
loop. In this case, the geometric interaction between resona-
tors A and B is reduced to a bare first-order coupling, which
turns out to be very weak. On the contrary, in Fig. 6�e� the
presence of the qubit loop clearly opens two new current
channels between A and B. These are located at the positions
of the upper and lower qubit loop segments in Fig. 6�b�. For
clarity, the closeup of one of these channels is shown in Fig.
6�f�. Notably, the two additional current channels in Fig. 6�e�
represent the geometric second-order coupling.

We now study in detail the relationship between first- and
second-order inductances for the structures in Figs. 6�b� and
6�c�. The notation is that of Sec. II C and Figs. 2�d�–2�f�. All
quantities are computed numerically with the aid of FAS-

THENRY for superconducting materials92 assuming a London
penetration depth �L=180 nm. We notice that in this case,
the simulated inductances are independent of the probing
frequency. In a first run of simulations, we calculate pure
first-order inductances only �cf. Appendix B�. These are the
simulated test inductances Lra

� and Lrb
� from which we obtain

the self-inductances Lra and Lrb of resonators A and B �more
details in the next paragraph�, the first-order mutual induc-
tance m between the two resonators, the self-inductance Lq
of the qubit loop, and the mutual inductances Mqa and Mqb
between qubit and resonators. In a second run of simulations,
we calculate directly �cf. Appendix B� the sum of first- and
second-order inductances. These are the renormalized test

inductances L̃ra
� and L̃rb

� of the portions of resonators A and B
shown in Fig. 6�b� and the total mutual inductance m̃ be-
tween the two resonators. The difference m̃−m
=4.781 92 pH, i.e., the geometric second-order coupling,
coincides up to the sixth significant digit with the quantity
MqaMqb /Lq expected from our general three-node network
approach in Sec. II B and, equivalently, from the three-circuit
theory in Sec. II C �cf. Table I�. We also find that the domi-
nating geometric coupling between A and B is not the first-
order inductance m=2.901 30 pH but the second-order one.
The ratio between second-order and first-order inductances is
�m̃−m� /m�1.6. In addition, the numerical simulations yield

the two shift test inductances 	L̃ra
� −Lra

� 	= 	L̃rb
� −Lrb

� 	
=4.781 00 pH �cf. also next paragraph�. These shifts renor-

malize the bare center frequencies fA and fB of resonators A
and B, respectively, and are found to be in very good agree-
ment up to several decimal digits with their analytical esti-
mates Lsa�Mqa

2 /Lq and Lsb�Mqb
2 /Lq of our three-circuit

theory in Sec. II C �cf. Table I�. We point out that in our
definition, the quantities Lsa and Lsb are strictly positive. Re-

markably, our simulations reveal that Lra
�  L̃ra

� and Lrb
�  L̃rb

� ,
reproducing the minus sign in the expressions Lra−Lsa and
Lrb−Lsb in Fig. 2�f�. These findings confirm the superiority
of the three-circuit theory in Sec. II C over the simple model
which results in the Hamiltonian of Eq. �9�. In the case of
purely inductive interactions, the resonators suffer a small
blueshift of their center frequencies, i.e., a shift toward
higher values. This is opposite to the redshift, i.e., toward
lower frequencies, experienced by the resonators for a pure
capacitive coupling �cf. Sec. II C and Fig. 2�c��.

The numerical values of all parameters discussed above
are listed in Table I. The values of the bare self-inductances
of the two resonators are first evaluated for the test length
�sim in the absence of the qubit loop. This yields the simu-
lated test inductances Lra

� and Lrb
� . Then, Lra

� and Lrb
� are ex-

trapolated to the full length �m of each microstrip resonator
to obtain Lra and Lrb, respectively. In the presence of the

qubit loop, the simulated test inductances L̃ra
� and L̃rb

� can
also be found. The resonator capacitances per unit length, cra
and crb, are calculated analytically by means of a conformal
mapping technique:95

cra = crb = 2��0�r ln� 8Hs

Wm
eff +

Wm
eff

4Hs
� . �31�

Here, �0=8.854	10−12 F /m is the permittivity of vacuum
�electric constant�,97 �r=11.5 is the relative dielectric con-
stant of the substrate �in our example, sapphire or silicon;
other dielectrics could be used�, and Wm

eff�Wm+0.398tm�1
+ln�2Hs / tm�� is the effective width of the resonators.95 As a
consequence, the resonator capacitances are Cra=�mcra and
Crb=�mcrb. Finally, from the knowledge of the velocity of
the electromagnetic waves inside the two resonators, c̄A
��m /��LraCra� and c̄B��m /��LrbCrb�, one can find the full
wavelengths �A= c̄A / fA and �B= c̄B / fB of the two resonators.
As before, all these results are summarized in Table I.

We now analyze the frequency dependence of the geomet-
ric first- and second-order coupling coefficients, i.e., the first-
and second-order mutual inductances, for a broad frequency
span between 1 Hz and 10 GHz. Again, we assume almost
perfectly conducting structures and use the FASTHENRY ver-
sion which does not support superconductivity. The results
are plotted in Figs. 7 and 8. In Fig. 7�a�, we plot the fre-
quency dependence of the simulated inductances Lq �which
is renormalized by a factor of 8.5 for clarity� and Mqa=Mqb.
From these, we then compute the expression MqaMqb /Lq for
the second-order mutual inductance as derived in Secs. II B
and II C. This expression is plotted in Fig. 7�b�. In Fig. 7�c�,
we plot the bare second-order mutual inductance m̃−m as a
function of frequency. Remarkably, comparing Fig. 7�b� to
Fig. 7�c�, we find MqaMqb /Lq= m̃−m with very high accu-
racy over the entire frequency range. In the frequency region
of interest for the operation of a quantum switch, i.e., from
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approximately 1 to 6 GHz, we find Lq�63.02 pH, Mqa
=Mqb�7.37 pH, and, consequently, MqaMqb /Lq= m̃−m
�7.33 pH. All these results prove again the general validity
of the derivations in Secs. II B and II C.

Finally, we study the scattering matrix elements between
resonators A and B both without and with flux qubit loop. In
absolute value, these elements correspond to the isolation
coefficients between A and B. As before, the FASTHENRY

simulations are performed within the regions in Figs. 6�c�
and 6�b�. In these figures, we also define the input and output
probing ports used in the simulations as ain and bin and aout
and bout, respectively. Under these assumptions, the scatter-
ing matrix element Sab=Sba in the absence of the flux qubit
loop is given by95,96

Sab � 20 log�− Iain

−

Ibin

+ �
I+=0

= 20 log
m

Lra
� , �32�

where Ibin

+ is a test current wave incident on the input probing
port bin of resonator B. The current −Iain

− corresponds to the
outgoing wave from the input probing port ain of resonator A.
The remaining current waves incident on the ports of the two
resonators are I+��Iain

+ , Iaout

+ , Ibout

+ �. In a similar way, the scat-

tering matrix element S̃ab= S̃ba in the presence of the flux
qubit loop is given by

S̃ab = 20 log
m̃

L̃ra
�

. �33�

We note that the same results as in Eqs. �32� and �33� are
obtained after replacing the input probing port bin with the
output probing port bout for the incident wave. In this case,
the associated current Ibin

+ has to be exchanged with Ibout

+ .
Similar substitutions apply for the probing port and associ-
ated current of the outgoing waves. In the literature,95 the
outgoing waves are often denominated as reflected waves.
Equation �32� can be straightforwardly found via the defini-

tions of mutual inductance and self-inductance, mIbin

+ =�ba

=Lra
� Iain

− . There, �ba is the flux generated in the portion of
resonator A by the current flowing in the portion of resonator
B in Fig. 6�c�. Similar arguments lead to Eq. �33�. When
considering superconducting materials, the scattering matrix
elements between A and B without and with flux qubit loop
can be evaluated by inserting the opportune numbers re-
ported in Table I into Eqs. �32� and �33�. This yields Sab�
−38.80 dB and S̃ab�−30.18 dB. If we want to calculate the
scattering matrix elements between A and B over a broad
frequency span �e.g., from 1 Hz to 10 GHz�, we can consider
again almost perfectly conducting structures. In this case, the
results are plotted in Figs. 8�a� and 8�b�. In the high-

−37.69

−37.67

−37.65

S
ab

(d
B

)

(a)

10
0

10
5

10
10

−30.70

−30.60

−30.50

frequency (Hz)

S~
ab

(d
B

)

(b)

without
flux qubit loop

with
flux qubit loop

FIG. 8. �Color online� FASTHENRY simulation results for the fre-
quency dependence of the scattering matrix elements between reso-
nators A and B considering almost perfectly conducting structures.
Frequency span: From 1 Hz to 10 GHz. �a� Scattering matrix ele-
ment Sab in the absence of the flux qubit loop. �b� Scattering matrix
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frequency region from 1 to 6 GHz, we find Sab�
−37.66 dB and S̃ab�−30.54 dB. These numbers are in good
agreement with the results obtained for superconducting ma-
terials. In addition, it is worth mentioning that the scattering
matrix elements between A and B calculated here with FAS-

THENRY for almost perfectly conducting structures are in ex-
cellent agreement with those evaluated for similar structures
by means of more advanced software based on the method of
moments.68,95

In conclusion, we study a detailed setup of two-resonator
circuit QED based on a superconducting flux qubit. In this
case, we prove that the geometric second-order inductance
found with our three-node network approach agrees well
with that obtained from numerical simulations. Moreover, we
give a set of parameters �many sets can easily be found� for
which the second-order inductance dominates over the first-
order one.

VI. SUMMARY AND CONCLUSIONS

In this work, we first introduce the formalism of two-
resonator circuit QED, i.e., the interaction between two on-
chip microwave cavities and a superconducting qubit circuit.
Starting from the Hamiltonian of a generic three-node net-
work, we show that the qubit circuit mediates a geometric
second-order coupling between the two resonators. For the
case of strong qubit-resonator coupling, the geometric
second-order interaction is a fundamental property of the
system. In contrast to the geometric first-order coupling be-
tween the two resonators, the second-order one cannot arbi-
trarily be reduced by means of proper engineering.

With the aid of two prototypical examples, we then high-
light the important role played by circuit topology in two-
resonator circuit QED. Our models reveal a clear departure
from a less detailed theory based on the Hamiltonian of a
charge quantum circuit �e.g., a Cooper-pair box or a trans-
mon� or a flux quantum circuit �e.g., a superconducting one
or three Josephson tunnel junction�s� loop� coupled to mul-
tiple quantized microwave fields. We demonstrate that this
simplified approach easily produces artifacts. We also show
that our three-node network approach suffices to obtain cor-
rect results when including topological details appropriately
into the definitions of the nodes.

We subsequently demonstrate the possibility of balancing
a geometric coupling against a dynamic second-order one. In
this way, the effective interaction between the two resonators
can be controlled by means of an external bias. Based on this
mechanism, we propose possible protocols for the imple-
mentation of a quantum switch and outline other advanced
applications, which exploit the presence of the qubit.

Remarkably, we find that the quantum switch operation is
robust against decoherence processes. In fact, we show that
the qubit acts as a mere mediator of virtual excitations be-
tween the two resonators, a condition which substantially
relaxes the requirements on the qubit performances.

Finally, we give detailed parameters for a specific setup of
two-resonator circuit QED based on a superconducting flux
qubit. We perform numerical simulations of the geometric
coupling coefficients and find excellent agreement with our

analytical predictions. In particular, we confirm the existence
of a regime where the geometric second-order coupling
dominates over the first-order one.

In conclusion, our findings show that in circuit QED, the
circuit properties of the system are crucial to provide a cor-
rect picture of the problem and also constitute a major dif-
ference with respect to atomic systems. This peculiar aspect
of circuit QED makes it a very rich environment for the
prediction and experimental implementation of unprec-
edented phenomena.
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APPENDIX A: HIGHER-ORDER CORRECTIONS TO THE
CAPACITANCE AND INDUCTANCE MATRICES

In Sec. II B, we account for corrections up to second-
order capacitive and inductive interactions between the ele-
ments of a three-node network. Throughout this work, we
show that for a three-node network the geometric second-
order coupling coefficients can dominate over the first-order
ones. For this reason, in the following we can safely assume
vanishing first-order coupling coefficients, c=m=0. Never-
theless, we notice that our results would not be qualitatively
affected even in the presence of appreciable first-order cou-
plings.

In this appendix, we demonstrate that third- and fourth-
order capacitances and inductances are negligible. We start
with the case of third-order corrections. There are two pos-
sible excitation pathways giving rise to third-order coupling
coefficients. These pathways are between resonator A and
qubit Q, A-Q-B-Q, or between resonator B and qubit Q,
B-Q-A-Q. Assuming the two resonators to have identical
properties, we study only the A-Q-B-Q pathway. In this case,
from the knowledge of the electromagnetic energy we can
derive

ĤAQ
�3� = V̂ACAQV̂Q + ÎAMAQÎQ + V̂ACAQ

1

CQQ
CQB

1

CBB
CBQV̂Q

+ ÎAMAQ
1

MQQ
MQB

1

MBB
MBQÎQ, �A1�

where the inverse paths Q-A and Q-B-Q-A are already in-
cluded. In the equation above, resonator B is only virtually
excited. In the same equation, we identify the capacitance
and inductance matrix elements up to third order,
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CAQ
�3� � CAQ�1 +

CQB
2

CQQCBB
� �A2�

and

MAQ
�3� � MAQ�1 +

MQB
2

MQQMBB
� . �A3�

In circuit theory, it is well known that the squares of the
electromagnetic coupling coefficients are57 CQB

2 /CQQCBB
�1 and MQB

2 /MQQMBB�1. This implies that the pure third-
order capacitance and inductance are always smaller than the
first-order ones, CAQ

�3� −CAQ�CAQ and MAQ
�3� −MAQ�MAQ.

For typical experimental parameters, we find third-order pro-
cesses to be negligible, CAQ

�3� −CAQ�CAQ and MAQ
�3� −MAQ

�MAQ. For example, using the parameters given in Sec. V
yields MQB

2 /MQQMBB�7.88	10−4�1.
In a similar way, the fourth-order coupling coefficients for

the excitation pathways A-Q-B-Q-B and, equivalently, B-Q-
A-Q-A can easily be found. In this case, it is the qubit to be
only virtually excited. The capacitance and inductance ma-
trix elements up to fourth order become

CAB
�4� �

CAQCQB

CQQ
�1 +

CQB
2

CQQCBB
� �A4�

and

MAQ
�4� �

MAQMQB

MQQ
�1 +

MQB
2

MQQMBB
� . �A5�

When comparing the above equations to Eqs. �A2� and �A3�,
respectively, we find that fourth-order processes are negli-
gible for typical experimental parameters. In the light of all
these considerations, all higher-order coupling coefficients
can safely be ignored within the scope of this work.

APPENDIX B: DETAILS OF THE FASTHENRY SIMULATIONS

In this appendix, we discuss the details of our FASTHENRY

simulations.92 First, we verify our hypothesis on the unifor-
mity of the ac currents �corresponding to the magnetic fields�
flowing on the resonators in the regions in Figs. 6�b� and
6�c�. To this end, we derive the quantized current on one of
the two resonators �e.g., A� following similar calculations as
in Refs. 22 and 60,

Îra�z,t� � iA0 cos��z

�m
� j�â†�t� − â�t�� , �B1�

where z represents a coordinate along the longitudinal direc-
tion of the resonator �see Fig. 6�c�� and t is the time. In Eq.
�B1�, the bosonic field operators are expressed in the Heisen-
berg picture. We notice that Eq. �B1� is valid for the first
mode of the � /2 resonator�s� considered in our example. The
contribution from the second mode is negligible for two
main reasons. First, the current is characterized by a node at
the flux qubit loop position chosen here. Second, the qubit-

resonator detuning becomes substantially larger, hence re-
sulting in a correspondingly reduced coupling. The contribu-
tion form higher modes can also be neglected because of the
increasing detuning.

Substituting the numbers in Table I into Eq. �B1� and
setting z= ��sim /2, we find that the two currents at the
boundaries ��sim /2 are about 0.998iA0, where iA0 is the
maximum amplitude of the quantized current in Eq. �B1�.
This maximum is obtained at the position z=0 of the mode
antinode. The main implications of current uniformity over
�sim are explained in detail in Sec. V. In a similar way, we
can also estimate the voltage contribution for the first mode
at the boundaries ��sim /2. In this case, we must replace the
cosine function in Eq. �B1� with a sine function, owing to the
conjugation of quantized currents and voltages. The maxi-
mum vacuum voltage of, e.g., resonator A is given by vA0
��
�A /2Cra�0.5871 �V for the realistic parameters in
Table I. At ��sim /2, we then obtain the maximum voltages
in the simulated regions, which are approximately
�0.065vA0. Toward the center of the simulated regions, the
voltage reduces to zero because its corresponding first mode
is characterized by a node. Also, higher modes do not con-
tribute for the same detuning arguments outlined above.
Therefore, we can safely neglect all capacitive couplings in
our simulations.

Second, we notice that �sim=500 �m is chosen to be
large enough compared to the lateral dimension �q1
=200 �m of the flux qubit loop �see Figs. 6�a�–6�c��. This
avoids errors due to fringing effects when simulating the
coupling coefficients between qubit and resonators. For con-
sistency, we have also performed several simulations assum-
ing larger values of �sim, up to 1–1.5 mm �data not shown�.68

We have not found any appreciable deviation in the resulting
inductances.

Third, we stress that special care has to be taken when
using FASTHENRY to simulate the second-order inductances
of our three-circuit network. In order to compute the induc-
tance matrix, test currents must be applied to the involved
structures at specific probing ports. However, when applying
test currents to all three circuits simultaneously, only first-
order inductances are calculated. This is due to the boundary
conditions that must be fulfilled at the probing ports. This
fact has important implications for the calculation of the mu-
tual inductance m̃, which is the sum of first- and second-
order mutual inductances between resonators A and B. In this
case, it is crucial to apply test currents only to the two reso-
nators but not to the qubit circuit. On the contrary, the pure
first-order mutual inductance m between A and B can be
simulated in two equivalent ways: Either the qubit circuit is
completely removed from the network or test currents are
applied to all three structures. We do not notice any differ-
ence between these two approaches. The above arguments
also apply to the calculation of the renormalized self-

inductances L̃ra
� and L̃rb

� of the two resonators and their pure
counterparts Lra

� and Lrb
� .
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